A Direct Digital Synthesizer with Arbitrary Modulus

Suppose you have a system with a 10 MHz sample clock, and you want to generate a sampled sinewave at any frequency on 500 kHz spacing; i.e., $0.5,1.0,1.5, \ldots \mathrm{MHz}$. In other words, $f=k^{*} \mathrm{f}_{\mathrm{s}} / 20$, where k is an integer and f_{s} is sample frequency. This article shows how to do this using a simple Direct Digital Synthesizer (DDS) with a look-up table that is at most 20 entries long. We'll also demonstrate a Quadrature-output DDS. A note on terminology: some authors call a DDS a Numerically-Controlled Oscillator (NCO).

Disclaimer: I have not implemented this DDS in hardware, so there could be problems with the scheme that I have not anticipated.

Background [1,2]

A continuous-time sinewave with frequency f_{0} is given by $y=\sin \left(2 \pi f_{0} t+\phi_{0}\right)$. For a sampled signal, we replace t by $n T_{s}$, where n is the sample number and T_{s} is the sample time. Letting $\phi_{0}=0$, we have:

$$
y=\sin \left(2 \pi f_{0} n T_{s}\right)
$$

The phase of the signal is:

$$
\Phi=2 \pi f_{o} n T_{s} \quad \operatorname{rad}(\bmod 2 \pi),
$$

Or

$$
\begin{equation*}
\Phi=f_{0} \mathrm{nT}_{\mathrm{s}} \quad \text { cycles }(\bmod 1) \tag{1}
\end{equation*}
$$

The phase wraps every 2π radians $=1$ cycle. Equation 1 shows that the phase increases (accumulates) by $f_{0} T_{s}$ every sample. So we can calculate the phase using an accumulator with input $=f_{0} T_{s}$, as shown in Figure 1a. The value of ϕ has a range of 0 to 1 (cycles). We generate the sinewave from the phase using a look-up table (LUT). What we've just described is a basic DDS. Note that another option to generate the sinewave from the phase not discussed here is the CORDiC algorithm [3].

Figure 1b adds quantization in the accumulator register, the phase, and the LUT entries. The accumulator input has 2^{c} steps over a range of 0 to 1 , giving a frequency step $\Delta f=f_{s} / 2^{c}$, where f_{s} is the sample frequency. The resulting output frequencies are $\mathrm{f}_{\mathrm{s}} / 2^{\mathrm{C}}, 2 \mathrm{f}_{s} / 2^{\mathrm{C}}, 3 \mathrm{f}_{s} / 2^{\mathrm{C}}$... Given the 2^{C} steps, we can say the DDS has a modulus of 2^{C}. As an example, if $\mathrm{C}=24$ bits, and $\mathrm{f}_{\mathrm{s}}=10 \mathrm{MHz}$, the frequency step is:

$$
\Delta f=10 E 6 / 2^{24}=0.59605 \mathrm{~Hz} .
$$

This frequency step is impressively small. However, if you want to program a frequency that is not on one of the steps, such as $f_{s} / 10$, there will be a small frequency error of up to $\Delta f / 2$.

If we were to maintain the 24 bits of phase, the LUT size for this example, taking symmetry of the sine into account, would be $1 / 4 * 2^{24}=2^{22}=4,194,304$ entries. To avoid such a large LUT, the phase is normally quantized to $P<C$ bits. The phase quantization results in so-called phase truncation spurs in the output spectrum. A typical value of P used in DDS chips is 15 bits, which, taking advantage of the symmetry of the sine, gives LUT size of $2^{13}=8192$ entries.

You can see that a standard DDS is not a perfect solution to our problem of generating $f_{0}=k^{*} f_{s} / 20$: it does not produce the exact frequency; it requires a not-so-small LUT; and it has spurs due to truncation of the phase. (Note that there are techniques for reducing phase-truncation spurs [4]).

(a)

(b)

Figure 1. a) Implementation of Equation 1. b) DDS with quantization.

DDS with Arbitrary Modulus

A DDS with modulus other than $2^{\text {c }}$ can address the shortcomings of a conventional DDS for our application.

If we multiply both sides of Equation 1 by an integer L, we get:

$$
\mathrm{L} \Phi=\mathrm{Lf}_{\mathrm{f}} \mathrm{nT}_{\mathrm{s}} \quad(\bmod \mathrm{~L})
$$

This equation can be implemented by modifying the accumulator in Figure 1a as shown in Figure 2.
Here we require m to be an integer between 0 and $L-1$, so there are L entries in the LUT, where L is not restricted to $2^{\text {c }}$. The input $L^{*} \mathrm{f}_{0} / \mathrm{fs}$ is an integer:

$$
\begin{array}{ll}
& L^{*} f_{0} / f s=k \\
\text { or } & f_{0}=k^{*} f s / L \tag{3}
\end{array}
$$

Since k is an integer, f_{0} has a step size of $\Delta f=f s / L$. For a given Δf and $f s$, we have:

$$
\begin{equation*}
L=\mathrm{fs} / \Delta f \tag{4}
\end{equation*}
$$

Letting $f_{s}=10 \mathrm{MHz}$ and $\Delta f=0.5 \mathrm{MHz}$, we get $L=20$. The number of bits required for the accumulator is found by taking $\log _{2}(\mathrm{~L})$ and rounding up to the next integer. For $L=20$, we need 5 bits.

As shown in Figure $2, m=L \phi$, so the phase is $\phi=m / L$. The fixed-point LUT entries are computed as:

$$
\begin{align*}
& u(m)=(1-\varepsilon) * \sin (2 \pi m / L), \quad m=0: L-1 \\
& \operatorname{LUT}(m)=\operatorname{round}\left(u(m) * 2^{D-1}\right) / 2^{D-1} \tag{5}
\end{align*}
$$

Where D is the number of bits in the 2 's complement LUT entry and $\varepsilon \ll 1$. I used $\varepsilon=1 / 2^{\mathrm{D}-2}$. Multiplication by $1-\varepsilon$ is needed to make the largest LUT entry less than 1.0 after rounding. For example, if the number of bits $D=8$, the largest allowable entry is $\left(2^{7}-1\right) / 2^{7}=127 / 128=01111111$. (The smallest entry is $-1=10000000$).

For our case, with $\mathrm{L}=20$, the LUT values are plotted in figure 3. The LUT contains one cycle of a sinewave evaluated over L samples. Note that when L is a multiple of 4 , it is possible to reduce the LUT size to $\mathrm{L} / 4$ entries by taking the symmetry of the sinewave into account.

Figure 2. DDS with arbitrary modulus

Figure 3. Sine look-up table for $\mathrm{L}=20$

Let's look at the behavior of our example DDS, with $\mathrm{f}_{\mathrm{s}}=10 \mathrm{~Hz}$ and $\Delta \mathrm{f}=0.5 \mathrm{~Hz}$. The Matlab code is listed in the Appendix. To start out, let the output frequency $f_{0}=0.5 \mathrm{~Hz}$. From equations 2 and $4, k=f_{0} / \Delta f$, so $\mathrm{k}=1$. As shown in Figure 4, m increments through all the integers from 0 to $\mathrm{L}-1$, then repeats. So the DDS just steps through every entry of the LUT. Also shown in Figure 4 is the phase $\phi=m / L$ cycles, and the sampled sinewave output.

Now, if we let $f_{0}=1 \mathrm{~Hz}, \mathrm{k}=2$. Thus $\mathrm{m}=0,2,4, \ldots$ and the DDS steps through every $2^{\text {nd }}$ entry of the LUT, as shown in Figures 5a and 5b.

If we let $f_{0}=1.5 \mathrm{~Hz}, \mathrm{k}=3$. Thus $\mathrm{m}=0,3,6, \ldots$ and the DDS steps through every $3^{\text {rd }}$ entry of the LUT, as shown in Figures 5c and 5d. As can be seen in Figure 5c, it takes three cycles for the phase sequence to repeat.

For $L=20$, the allowable output frequencies f_{0} that are less than $f_{s} / 2$ are: $0.5,1,1.5,2,2.5,3,3.5,4$, and 4.5 Hz , corresponding to $k=1$: 9 . For L even, there are $L / 2-1$ allowable values of f_{0}.

Since accumulator output m is always an integer, there is no phase truncation error. The only error in the output y is due to rounding of the LUT entries. Figure 6 compares spectra for $f_{0}=1.5 \mathrm{~Hz}$ of a conventional DDS with 15-bits of phase to our DDS with L= 20 (4.3 bits of phase). Both have 16-bit LUT entries. The modulus 20 DDS has lower spurious, with the worst spur at about -105 dB with respect to the level at 1.5 Hz .

Finally, note that it is also possible to make a DDS with an arbitrary programmable modulus. The approach involves using two accumulators [5,6].

Figure 4. DDS with $L=20, f_{s}=10 \mathrm{~Hz}$ and $\Delta f=0.5 \mathrm{~Hz}$.
a) Accumulator output m for $f_{0}=0.5 \mathrm{~Hz}$.
b) Phase in cycles.
c) LUT output y.

Figure 5. DDS with $L=20, f_{s}=10 \mathrm{~Hz}$ and $\Delta f=0.5 \mathrm{~Hz}$.
a) Accumulator output m for $f_{0}=1.0 \mathrm{~Hz}$, and
b) LUT output y
c) Accumulator output m for $f_{0}=1.5 \mathrm{~Hz}$, and
d) LUT output y

Figure 6. Spectra of conventional DDS and DDS with modulus $L=20 . f_{0}=1.5 \mathrm{~Hz}$ and $f_{s}=10 \mathrm{~Hz}$.
Left: Conventional DDS with 15 bits of phase and 16-bit LUT entries.
Right: DDS with L= 20 (4.3 bits of phase) and 16-bit LUT entries.

Quadrature Output DDS

A quadrature output DDS has both cosine and -sine outputs. The cosine phase leads sine phase by $\pi / 2$ radians $=1 / 4$ cycle. Given m as the LUT address for a sine, the address for the cosine is:

$$
p=m+L / 4 \quad \bmod (L)
$$

where L is the DDS modulus = LUT length, which must be a multiple of 4 . We can modify the Matlab code in the Appendix to compute both sine and cosine. Here is the modified for loop:

```
sine(1)= 0;
cosine(1)= 1;
m= 0;
for n= 2:N
    r = k + m;
    m= mod(r,L); % LUT address/ sine
    p= mod(m+ L/4,L); % LUT address/ cosine
    sine(n)= lut(m+1); % sine output
    cosine(n)= lut(p+1); % cosine output
end
```

The Quadrature DDS outputs for $L=20, f_{s}=10 \mathrm{~Hz}$, and $f_{0}=1 \mathrm{~Hz}$ are shown in Figure 7 .

Figure 7. Quadrature DDS with $L=20, f_{s}=10 \mathrm{~Hz}, \Delta f=0.5 \mathrm{~Hz}$ and $f_{0}=1 \mathrm{~Hz}$.
a) cosine address p
p. b) cosine output. c) sine address m.
d) -sine output.

Simplest DDS with L= 4

If we let $L=4$, there is only one output frequency below $f_{s} / 2$:

$$
f_{0}=k^{*} f_{s} / L=f_{s} / 4 \quad(k=1)
$$

The LUT sine values from Equation 5 are:

$$
\begin{aligned}
\text { LUT } & =\left[\begin{array}{lll}
0 & \sin (\pi / 2) & 0 \sin (3 \pi / 2)
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 1 & 0 & -1
\end{array}\right]
\end{aligned}
$$

The cosine values are $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]$.

A quadrature L= 4 DDS using cosine and -sine can be used to down-convert a signal centered at $\mathrm{f}_{\mathrm{s}} / 4$ to complex baseband $[7,8]$. Since all LUT values are 0 or $+/-1$, no multiplier is needed to perform the frequency conversion.

References

1. MT-085, "Fundamentals of Direct Digital Synthesis (DDS)", Analog Devices, 2009, https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
2. "A Technical Tutorial on Digital Signal Synthesis", Analog Devices, 1999, https://www.analog.com/media/cn/training-seminars/tutorials/450968421DDS Tutorial rev12-2-99.pdf
3. Rice, Michael, Digital Communications, A Discrete-Time Approach, Pearson, 2009, section 9.4.
4. Rice, section 9.2.
5. Gentile, Ken, AN-953, "Direct Digital Synthesis with a Programmable Modulus", Analog Devices, 2014, https://www.analog.com/media/en/technical-documentation/application-notes/AN-
953.pdf
6. Hou, Yuqing, et. al., "An Accurate DDS Method Using Compound Frequency Tuning Word and Its FPGA Implementation", Electronics, Nov, 2018, https://www.mdpi.com/2079-9292/7/11/330
7. Harris, Fredric J., Multirate Signal Processing, Prentice-Hall PTR, 2004, section 13.2.1.
8. Lyons, Richard G., Understanding Digital Signal Processing, $3^{\text {rd }}$ Ed., Prentice-Hall, 2011, section 13.1.2.

Appendix Matlab Code for DDS with Modulus = 20

```
% dds_mod20.m 5/30/19 Neil Robertson
% DDS with modulus L = 20
% output frequency f0 = k*fs/L
% Plot LUT, phase, and output
fs= 10; % Hz sample freq
df= 0.5; % Hz desired freq step
L= fs/df % length of LUT= modulus of accumulator
if mod(L,1)~=0
    error(' fs/fstep must be an integer')
end
```

\% create LUT with one full cycle of sinewave (not using symmetry)
$D=16 ; \quad$ \% bits LUT entries quantization
$\mathrm{m}=0: \mathrm{L}-1$;
phi_lut= m/L; \% cycles phase
epsilon= 1/2^(D-2);
u= (1 - epsilon) *sin(2*pi*phi_lut);
lut $=$ round $\left(u^{*} 2^{\wedge}(D-1)\right) /\left(2^{\wedge}(D-1)\right)$; $\%$ quantize lut entries
\%
\% DDS
$\mathrm{N}=30$; \quad number of output samples
$f 0=0.5 ; \quad \% \mathrm{~Hz}$ output frequency (must be multiple of df)
$\mathrm{k}=\mathrm{L} * \mathrm{f} 0 / \mathrm{fs} ; \quad$ \% integer input to DDS
$y(1)=0$;
$\mathrm{m}=0$;
for $\mathrm{n}=2: \mathrm{N}$
$r=k+m$;
$m=\bmod (r, L) ; \quad$ L LUT address
$\mathrm{y}(\mathrm{n})=\operatorname{lut}(\mathrm{m}+1) ; \quad \%$ output
phi $(\mathrm{n})=\mathrm{m} / \mathrm{L}$; \% cycles phase
end
\%
\%
\% Plotting
\%
\% plot LUT
stem(0:L-1,lut), grid
axis([0 $32-1$ 1])
xlabel('m'),ylabel('lut'),figure
\%
\%plot m and phi
subplot(311), plot(0:N-1,phi*L,'-','markersize', 9), grid
axis([0 N 0 20])
xlabel('n'), ylabel('m')
subplot(312), plot(0:N-1,phi,'.-','markersize', 9), grid
axis([0 N 0 1])
xlabel('n'),ylabel('phi (cycles) = m/L')
\%

```
% plot y along with "continuous" sinewave y2 in grey
fs plot= fs*16; % fs of "continuous" sine
Ts= 1/fs plot;
Len= 16*N;
i= 0:Len-1;
y2= sin(2*pi*f0*i*Ts); % "continuous" sine
subplot(313),plot(0:N-1,y,'.','markersize',9),grid
hold on
plot(i/16,y2,'color',[.5 .5 .5])
axis([0 N -1 1])
xlabel('n'),ylabel('y')
```

